walraven

WCS1 Concrete Screw

ETA-16/0516

The value of smart

walraven.com

Approval body for construction products and types of construction

Bautechnisches Prüfamt

An institution established by the Federal and Laender Governments

European Technical Assessment

ETA-16/0516 of 1 October 2019

English translation prepared by DIBt - Original version in German language

General Part

Technical Assessment Body issuing the European Technical Assessment:

Trade name of the construction product

Product family to which the construction product belongs

Manufacturer

Manufacturing plant

This European Technical Assessment contains

This European Technical Assessment is issued in accordance with Regulation (EU) No 305/2011, on the basis of

This version replaces

Deutsches Institut für Beutechnik

Walneven concrete screw WCS1

Fasteners for use in concrete for redundant non-structural systems

J. van Wakaven Holding E.V. Industrieweg 5 3841 RK Mijdrecht NIEDERLANDE

Weineven Factory A4

16 pages including 3 ennexes which form an integral part of this essessment

EAD 330747-00-0801

ETA-16/0518 issued on 16 August 2016

Deutsches Institut für Bautechnik

Kolonnenstraße 30 B | 10829 Berlin | GERMANY | Phone: +493078730-0 | Fax: +493078730-320 | Email: dibt@dibt.de | www.dibt.de

Z63508.19

8.06.01-271/19

European Technical Assessment ETA-190516 English translation prepared by DiBt

Page 2 of 16 | 1 October 2015

The European Technical Assessment is issued by the Technical Assessment Body in its official language. Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and shall be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full. However, partial reproduction may only be made with the written consent of the issuing Technical Assessment Body. Any partial reproduction shall be identified as such.

This European Technical Assessment may be withdrawn by the issuing Technical Assessment Body, in particular pursuant to information by the Commission in accordance with Article 25(3) of Regulation (EU) No 305/2011.

7556.5

European Technical Assessment ETA-190516 English translation prepared by DBI:

Page 4 of 16 | 1 October 2015

5 Technical details necessary for the implementation of the AVCP system, as provided for in the applicable European Assessment Document

Technical details necessary for the implementation of the AVCP system are laid down in the control plan deposited at Deutsches Institut für Bautechnik.

Issued in Berlin 1 October 2019 by Deutsches Institut für Baulechnik

BD Dipl.-Ing. Andreas Kummerow Head of Department *beglaubigt* Tempel

7556.6

European Technical Assessment ETA-190516 English translation prepared by DBI:

Page 4 of 16 | 1 October 2015

5 Technical details necessary for the implementation of the AVCP system, as provided for in the applicable European Assessment Document

Technical details necessary for the implementation of the AVCP system are laid down in the control plan deposited at Deutsches Institut für Bautechnik.

Issued in Berlin 1 October 2019 by Deutsches Institut für Baulechnik

BD Dipl.-Ing. Andreas Kummerow Head of Department *beglaubigt* Tempel

7556.6

253512.19

8.05.01-271/19

Table 1: Material Product name Material Part - Steel EN 10263-4:2017 galvanized acc. to EN ISO 4042:2018 WCS1 concrete screw Zinc flake coating according to EN ISO 10683:2018 (≥5µm) all 1.4401; 1.4404; 1.4571; 1.4578 WCS1 concrete screw A4 types 1.4529 WCS1 concrete screw HCR Nominal characteristic steel Rupture Part Product name elongation Yield strength Ultimate strength A₅ [%] fyk [N/mm²] f_{uk} [N/mm²] WCS1 concrete screw all WCS1 concrete screw A4 560 700 ≤8 types WCS1 concrete screw HCR

WCS1 HCR

Code: TSM

Screw length: 100

10

HCR

Screw size:

Material:

Table 2: Dimensions

WCS1 concrete s	crew	size	5	6
Screw length	≤L	[mm]	2	200
Core diameter	d _k	[mm]	4,0	5,1
Thread outer diameter	ds	[mm]	6,5	7,5

WCS1 A4

Code: TSM

Screw size:

Material:

Screw length: 100

10

Α4

Walraven concrete screw WCS1

Product description

10

Material, Dimensions and markings

263612.19

80501-271/19

Marking:

Code: TSM

Screw size:

Screw length: 100

WCS1

Specification of Intended use

Anchorages subject to:

- static and guasi static loads
- Used only for multiple use for non-structural application according to EN 1992-4:2018
- Used for anchorages with requirements related to resistance of fire (not for using in prestressed hollow core slabs): size 6
- Used for anchorages in prestressed hollow core slabs: size 6

Base materials:

- Reinforced and unreinforced concrete without fibers according to EN 206:2013.
- Strength classes C20/25 to C50/60 according to EN 206:2013.
- Cracked and uncracked concrete.

Use conditions (Environmental conditions):

- Concrete screws subject to dry internal conditions: all screw types.
- Structural subject to external atmospheric exposure (including industrial and marine environment) and to permanently damp internal condition no particular aggressive conditions exits: screw types made of stainless steel with marking A4.
- Structural subject to external atmospheric exposure (including industrial and marine environment) and to permanently damp internal condition if particular aggressive conditions exits: screw types made of stainless steel with marking HCR.
 Note: Such particular aggressive conditions are e.g. permanent, alternating immersion in seawater or splash zone of seawater, chloride atmosphere of indoor swimming pools or atmosphere with chemical pollution (e.g. in desulphurization plants or road tunnels where de-icing materials are used).

Design:

- Anchorages are to be designed under the responsibility of an engineer experienced in anchorages and concrete work.
- Verifiable calculation notes and drawings are to be prepared taking account of the loads to be anchored. The position of the anchor is indicated on the design drawings (e.g. position of the anchor relative to reinforcement or to supports, etc.).
- Anchorages are designed according to EN 1992-4:2018 and EOTA Technical Report TR 055.
- The design for shear load according to EN 1992-4:2018, Section 6.2.2 applies for all specified diameters d_f of clearance hole in the fixture in Annex B2, Table 3.

Installation:

- Hammer drilling or hollow drilling.
- Anchor installation carried out by appropriately qualified personnel and under the supervision
 of the person responsible for technical matters on site.
- In case of aborted hole: new drilling must be drilled at a minimum distance of twice the depth
 of aborted hole or closer, if the aborted hole is filled with high strength mortar and only if the
 hole is not in the direction of the oblique tensile or shear load.
- After installation further turning of the anchor must not be possible. The head of the anchor is supported in the fixture and is not damaged.

TOGE concrete screw TSM High Performance

Intended use Specification Annex B1

75-512-19

805.01-271/19

Table 3: Installation Parame	eters				
WCS1 concrete screw size			5	6	5
Nominal embedment depth		h _{nom}	h _{nomi}	hnom1	h _{nom2}
		[mm]	35	35	55
Nominal drill hole diameter	do	[mm]	5	6	5
Cutting diameter of drill bit	d _{cut} ≤	[mm]	5,40	6,4	40
Drill hole depth	h ₁ ≥	[mm]	40	40	60
Clearance hole diameter	d₁≤	[mm]	7	8	3
Installation torque (version with connection thread)	T _{inst} ≤	[Nm]	8	1	0
Recommended torque impac	t	[Nm]	Max. torque acco	ording to manufactur	rer's instructions
screw driver		[Nm]	110	160	

Table 4: Minimum thickness of member, minimum edge distance and minimum spacing

WCS1 concrete screw size			5	5 6		
Nominal embedment de	nont donth		h _{nom1}	h _{nom1}	h _{nom2}	
Nominal embedment de	[mm]	35	35	55		
Minimum thickness of member	h _{min}	[mm]	80	80	100	
Minimum edge distance	Cmin	[mm]	35	35	40	
Minimum spacing	Smin	[mm]	35	35	40	

253512.19

8.05.01-271/19

NCS1 concre	ete screw size			5		5	
Nominal embedment depth			h _{nom}	hnomi	hnom1	h _{nom2}	
			[mm]	35	35	55	
Steel failure	for tension and	d shear	loading	ξ		-	
Characteristic	tension load	NRk,s	[kN]	8,7	14	1.0	
Partial factor tension load		γ _{Ms,N}	[-]		1,5		
Characteristic shear load		V _{Rk,s}	[kN]	4,4 7,0		,0	
Partial factor shear load		γ _{Ms,V}	[-]	1,25			
Ductility factor		k7	[-]		0,8		
Characteristic	bending load	M ⁰ _{Rk,s}	[Nm]	5,3	10),9	
Pull-out failu	ire						
Character-	cracked	N _{Rk,p}	[kN]	1,5	3,0	7,5	
istic tension load C20/25	uncracked	N _{Rk,p}	[kN]	1,5	3,0	7,5	
	C20/25				1,12		
Increasing factor for	C30/37	Ψ		1,22			
N _{Rk,p}	C40/50		[-]		1,41		
	C50/60]			1,58		
Concrete fai	ure: Splitting f	ailure, (concret	e cone failure and	pry-out failure		
Effective emb	edment depth	h _{ef}	[mm]	27	27	44	
k-factor	cracked	k1=kcr	[-]		7,7		
K-factor	uncracked	k ₁ =k _{ucr}	[-]	11,0			
Concrete	spacing	S _{cr,N}	[mm]	3 x h _{ef}			
cone failure	edge distance	C _{cr,N}	[mm]	1,5 x h _{ef}			
Splitting	spacing	S _{cr,Sp}	[mm]	120	120	160	
failure	edge distance	C _{cr,Sp}	[mm]	60	60	80	
Factor for pry-out failure		k ₈	[-]		1,0		
Installation fa	ctor	Yinst	[-]	1,2	1,0	1,0	
Concrete ed	ge failure						
Effective leng	th in concrete	$I_f = h_{ef}$	[mm]	27	27	44	
	r diameter of	d _{nom}	[mm]	5		6	
screw				-			
Walray	ven concrete se	crew W	CS1				
	rmances					Annex C1	

25:512.19

80501-271/19

Table 6: Characteristic values of resistance in precast prestressed hollow core slabs C30/37 to C50/60

WCS1 concrete screw size			6			
Bottom flange thickness	db	[mm]	≥ 25	≥ 30	≥ 35	
Characteristic resistance	F ⁰ Rk	[kN]	1	2	3	
Installation factor	γ_{inst}	[-]		1,0		

Table 7: Limiting distances for application in precast prestressed hollow core slabs

Distances for application in	precas	t prest	ressed hollow core slabs
Minimum edge distance	Cmin	[mm]	≥ 100
Minimum anchor spacing	Smin	[mm]	≥ 100
Minimum distance between anchor groups	a _{min}	[mm]	≥ 100
Distance of core	I _c	[mm]	≥ 100
Distance of prestressing steel	l _p	[mm]	≥ 100
Distance between anchor position and prestressing steel	ap	[mm]	≥ 50

Walraven concrete screw WCS1

Performances

Characteristic values and limiting distances in precast prestressed hollow core slabs Annex C2

253512.19

8.05.01-271/19

e screw siz Iment dept r tension a R30 R60 R90 R120 R30 R90 R120 R120 R30-R90	th	h _{nom} [mm] oad (F _{Rk,} [kN] [kN] [kN] [NM] [Nm] [Nm] [Nm]	WC h _{nom1} 35 s,fi = N _{Rk,s,fi} = V 0, 0, 0, 0, 0, 0, 0,	h _{nom2} 55 / _{Ric,s,fi}) ,9 ,8 ,6 ,4 ,4 ,7 ,6 ,5	WCS1 h _{nom1} 35	1 A4/HCR hnom2 55 1,2 1,2 1,2 0,8 0,9 0,9 0,9 0,9
r tension a R30 R60 R90 R120 R30 R60 R90 R120	and shear lo F _{Rk,s,fi30} F _{Rk,s,fi60} F _{Rk,s,fi20} M ⁰ _{Rk,s,fi30} M ⁰ _{Rk,s,fi60} M ⁰ _{Rk,s,fi60} M ⁰ _{Rk,s,fi20}	[mm] oad (F _{Rk} , [kN] [kN] [kN] [NM] [Nm]	35 s,fi = N _{Rk,s,fi} = V 0, 0, 0, 0, 0, 0, 0,	55 / _{Ric,s,fi}) ,9 ,8 ,6 ,6 ,4 ,7 ,6 ,5	h _{nom1} 35	h _{nom2} 55 1,2 1,2 0,8 0,9 0,9 0,9
r tension a R30 R60 R90 R120 R30 R60 R90 R120	and shear lo F _{Rk,s,fi30} F _{Rk,s,fi60} F _{Rk,s,fi20} M ⁰ _{Rk,s,fi30} M ⁰ _{Rk,s,fi60} M ⁰ _{Rk,s,fi60} M ⁰ _{Rk,s,fi20}	[mm] oad (F _{Rk} , [kN] [kN] [kN] [NM] [Nm]	35 s,fi = N _{Rk,s,fi} = V 0, 0, 0, 0, 0, 0, 0,	55 / _{Ric,s,fi}) ,9 ,8 ,6 ,6 ,4 ,7 ,6 ,5	35	55 1,2 1,2 0,8 0,9 0,9 0,9
R30 R60 R120 R30 R60 R90 R120	F _{Rk,s,fi30} F _{Rk,s,fi30} F _{Rk,s,fi30} M ⁰ _{Rk,s,fi30} M ⁰ _{Rk,s,fi60} M ⁰ _{Rk,s,fi90}	[kN] [kN] [kN] [kN] [Nm] [Nm]	0, 0, 0, 0, 0, 0, 0,	,9 ,8 ,6 ,4 ,7 ,6 ,5		1,2 1,2 0,8 0,9 0,9 0,9
R60 R90 R120 R30 R60 R90 R120	F _{Rk,s,fi60} F _{Rk,s,fi90} F _{Rk,s,fi20} M ⁰ _{Rk,s,fi30} M ⁰ _{Rk,s,fi60} M ⁰ _{Rk,s,fi90}	[kN] [kN] [kN] [Nm] [Nm] [Nm]	0, 0, 0, 0, 0, 0,	,8 ,6 ,4 ,7 ,6 ,5		1,2 1,2 0,8 0,9 0,9 0,9
R90 R120 R30 R60 R90 R120	F _{Rk,s,fi90} F _{Rk,s,fi120} M ⁰ _{Rk,s,fi30} M ⁰ _{Rk,s,fi60} M ⁰ _{Rk,s,fi90} M ⁰ _{Rk,s,fi120}	[kN] [kN] [Nm] [Nm]	0, 0, 0, 0, 0,	,6 ,4 ,7 ,6 ,5		1,2 0,8 0,9 0,9 0,9
R120 R30 R60 R90 R120	F _{Rk,s,fi120} M ⁰ _{Rk,s,fi30} M ⁰ _{Rk,s,fi60} M ⁰ _{Rk,s,fi90} M ⁰ _{Rk,s,fi120}	[kN] [Nm] [Nm] [Nm]	0, 0, 0, 0,	,4 ,7 ,6 ,5		0,8 0,9 0,9 0,9
R30 R60 R90 R120	M ⁰ _{Rk,s,fi30} M ⁰ _{Rk,s,fi60} M ⁰ _{Rk,s,fi90} M ⁰ _{Rk,s,fi120}	[Nm] [Nm] [Nm]	0, 0, 0,	,7 ,6 ,5		0,9 0,9 0,9
R60 R90 R120	M ⁰ _{Rk,s,fi60} M ⁰ _{Rk,s,fi90} M ⁰ _{Rk,s,fi120}	[Nm] [Nm]	0,	.6 .5		0,9 0,9
R90 R120	M ⁰ _{Rk,s,fi90} M ⁰ _{Rk,s,fi120}	[Nm]	0,	,5		0,9
R120	M ⁰ _{Rk,s,fi120}					
I	M ⁰ _{Rk,s,fi120}	[Nm]	0,	.3		0,6
R30-R90	Notes					
	••кк,р,п	[kN]	0,75	1,875	0,75	1,875
R120	N _{Rk,p,fi}	[kN]	0,6	1,5	0,6	1,5
failure						
R30-R90	N ⁰ _{Rk,c,fi}	[kN]	0,86	2,76	0,86	2,76
R120	N ⁰ _{Rk,c,fi}	[kN]	0,68	2,21	0,68	2,21
	C _{cr,fi}	[mm]				
tack from r	more than o	ne side,	the minimum	edge distance	shall be ≥300	0mm.
	S _{cr,fi}	[mm]		4 x	h _{ef}	
	k	[_1]		1	0	
	to be increas	sed for w				to the given
ances						Annex C3
	failure R30-R90 R120 tack from tack from tack from tack from tack from tack from	failure R30-R90 N ⁰ _{Rk,c,fi} R120 N ⁰ _{Rk,c,fi} C _{cr,fi} tack from more than o S _{cr,fi} k ₈ lepth has to be increased h concrete screw WCS ances	failure R30-R90 N ⁰ _{Rk,c,fi} [kN] R120 N ⁰ _{Rk,c,fi} [kN] C _{cr,fi} [kN] C _{cr,fi} [mm] tack from more than one side, S _{cr,fi} [mm] kack from more than one side, Concrete screw WCS1 ances	failure R30-R90 N ⁰ _{Rk,c,fi} [kN] 0,86 R120 N ⁰ _{Rk,c,fi} [kN] 0,68 c _{cr,fi} [mm]	failure R30-R90 N ⁰ _{Rk,c,fi} [kN] 0,86 2,76 R120 N ⁰ _{Rk,c,fi} [kN] 0,68 2,21 C _{cr,fi} [mm] 2 x tack from more than one side, the minimum edge distance \$ \$ \$ \$ kack from more than one side, the minimum edge distance \$ \$ \$ \$ kack from more than one side, the minimum edge distance \$ \$ \$ \$ kack from more than one side, the minimum edge distance \$ \$ \$ \$ \$ \$ \$ kack from more than one side, the minimum edge distance \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	failure R30-R90 N ⁰ _{Rk,c,fi} [kN] 0,86 2,76 0,86 R120 N ⁰ _{Rk,c,fi} [kN] 0,68 2,21 0,68 c _{cr,fi} [mm] 2 x h _{ef} 2 x h _{ef} tack from more than one side, the minimum edge distance shall be ≥30 s _{cr,fi} [mm] 4 x h _{ef} k ₈ [-] 1,0 lepth has to be increased for wet concrete by at least 30 mm compared ation in prestressed hollow core slabs concrete screw WCS1 ances

walraven

Find out how we can support

Would you like to find out more about any of the solutions described in this brochure? Or would you like to discuss how we could support you find the best possible solution for your project? Get in touch today!

Other countries

Walraven International P.O. Box 15 3640 AA Mijdrecht (NL) Tel. +31 (0)297 23 30 00 Fax +31 (0)297 23 30 99 export@walraven.com

 Walraven Group

 Mijdrecht (NL) · Tienen (BE) · Bayreuth (DE) · Banbury (GB) · Malmö (SE) · Grenoble (FR) · Barcelona (ES) · Kraków (PL)

 Mladá Boleslav (CZ) · Moscow (RU) · Kyiv (UA) · Detroit (US) · Shanghai (CN) · Dubai (AE) · Budapest (HU)